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Abstract 

 
Densely populated cities experience adverse effects of Urban Heat Island (UHI) including higher numbers of emergency hospital 

admissions and heat related illnesses. Studying UHI effects and temperature variations has become even more important as global 

temperatures continue to rise. To better understand UHIs within New York City, an exploratory study was done using a field 

campaign to measure high resolution spatial and temporal temperature variations within Manhattan’s urban setting. These time 

correlated temperature measurements along with weather model data of temperature and relative humidity were used to predict 

temperature variability using weather forecasts. The amplitude of spatial variations was most dependent on temperature (r = 

0.400) and low level lapse rate (r = -0.258) while temporal variations were most dependent on temperature (r = 0.398), low level 

lapse rates (r = -0.361), and mid-level lapse rate (r = -0.320). Regression of weather variables can be used to predict the 

amplitude of spatial and temporal variation in temperature within a city for each day. This study directs attention towards high 

resolution near-surface air temperature analysis and offers a new look at surface thermal properties. The application of the 

resulting data and modeling is most suitable for forecasting microscale variability in urban settings. 
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1. Introduction 

 
UHI effects or local hotspots are common phenomenon experienced in urban settings. These concentrated 

areas of elevated temperature “represent one of the most significant human–induced changes to Earth’s surface 

climate” (Zhao et al., 2014). UHI is caused by lack of evapotranspiration, waste heat produced by air conditioning, 

industries and vehicles, air pollution and radiative trapping due to land surface modification in cities (Oke, 1982). 

The above factors lead to increase in air and surface temperature in urban centers and convection of heat from 

surface temperatures into the lower atmosphere. Local climate can impact UHI and alter convection patterns, and so 

statistical models of local climate/weather may help create forecast models for predicating temperature variations at 

surface level (Zhao et al., 2014). A number of heat transfer mechanisms that vary throughout a city can cause 

variations in air temperature.  For instance, absorption of sunlight will vary by albedo and shading due to building 

materials and geometry.  Infrared radiation is absorbed and re-radiated by surrounding structures, so that variations 

in exposure to the sky (sky view fraction) will cause variations in radiation cooling.  These factors affect surface 

temperature, which is transferred to the air depending on wind flow.  More exposed areas will have both more 

radiation cooling as well as faster wind flow, so that the heat transfer per volume of air is less, leading to cooler air 

temperatures. Note that weather variables may have dual effects: higher wind may result in greater air temperature 

contrasts between exposed and sheltered areas while mixing air between areas.  Full cloud cover will produce less 

variation due to solar heating, and also less variation due to infrared cooling. In studying UHI effects understanding 

inner city temperature variations are important because health impacts are a sensitive function of temperature 

(Kinney et al., 2008), so temperature variability within a densely populated area can have large effects. 

 

The U.S. EPA Climate Change Indicators report released its extreme heat section statement of May 2014 

specifying that “the number of increased heat-related deaths in the future is going to be greater than the number of 

reduced cold-related deaths” (2014). “Heat is the number one weather-related killer in the U.S. alone” (EPA, 2014). 

Profound impacts of UHI are seen on the lives of those who reside in cities (Zhao, 2014). Hotter days are associated 

with serious health impacts, heart attacks and respiratory and cardiovascular diseases (Kenward et al., 2014). 

Extreme climate events are predicted to increase in number, duration, and frequency with on-going climate change 

(Astrom et al., 2011). In recent decades, several devastating heat waves have caused large health consequences 

across the globe. For example, the 1987 heat wave caused around 2000 deaths in Athens; the 1995 Chicago heat 

wave caused around 700 deaths; and the 2003 heat wave in Europe was estimated to have caused 70 000 deaths 

(Katsouyanni et al., 1988; Semenza et al., 1996). 

 

Densely populated cities like Manhattan can be affected by the impact of UHI much more than less 

populated cities. Urbanization increases “the diurnal minima and the daily means in all seasons” (Karl et al., 1988). 

Manhattan lacks evaporative cooling from vegetation and moist soil, and retains heat with its buildings and 

pavements which causes radiative trapping in canyons. The typical physical features of Manhattan’s land surface 

and its mixture of land cover reacts differently with UHI, causing smaller islands of urban heat throughout the city 

(Grimmond, 2007). As the impact of UHI increases so does the health risks of heat wave.  Even though many 

studies have been focused on the impact of UHI and temperature changes between urban and rural air temperature, 

not many look at the temperature variations within a city.  These studies mostly use remote sensing data such as 

MODIS, Landsat and Aster or typical measurements collected by local meteorological station networks.  High 

resolution satellites suitable for urban studies are polar orbiting and tend to be sun synchronous, so do not capture 

diurnal variations; while the highest resolution instruments such as Landsat have narrow swaths and repeat times on 

the order of weeks.  Cloud free conditions are required.  Moreover, satellites measure surface temperatures including 

rooftops and treetops rather than air temperature.  For these reasons a set of surface instruments is preferable for 

capturing weather effects on urban temperature variability. 

 

In local meteorological study, mobile traverses measured temperature variations within in a town in 

Hungary four hours after the sunset to find the impact of UHI. In regression of its measured temperature against 

building fraction, water fraction, and sky view fraction correlations of 0.8 to 0.9 were calculated based on the 

season.  Ho et al. (2014) used 60 weather stations in the Vancouver area to develop a model for air temperature 

given sky view fraction, vegetation, elevation and solar radiation.  Comrie (2000) mapped the heat island of Tucson 

Arizona using mobile instruments, and attributed most inner city temperature variability to cool air drainage from 

the mountains.  Eliasson (1996) was able to predict the differences in temperature between two urban locations 

(open and urban canyon) based on regression of weather variables.  A study using a combination of mobile and 
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fixed instruments in Granada mapped the structure of the heat island and noted how the amplitude decreased with 

wind speed and cloudiness (Montavez et al., 2000).  

 

Whereas previous mentioned studies of the evaluation of UHI variability have only focused on urban and 

rural air temperature, the current study will uniquely look at spatial and temporal variation in temperature within a 

city using weather forecast model run by the National centers for Environmental Prediction (NCEP). The weather 

forecast model from NCEP generates multiple grids of weather forecast over North America for different horizontal 

resolutions using numerical weather models. The final product of this work will lead to a statistical model that could 

predict air temperature and variability within a city based on weather factors.   At this stage the analysis should be 

considered exploratory. 

 

2. Methodology 

 
HOBO Micro-Station Data Loggers (Onset Product #: H21-002) which consist of relative humidity and 

temperature sensors were installed inside white instrument shelter boxes and mounted 3-4 meters above ground on 

lampposts at ten different stations throughout the island of Manhattan. Data was taken, starting June 23, 2013, in 

three minute intervals for the entire period of the study, ending September 20, 2013. Figure 1 shows the locations of 

the ten stations (a), sensors (b), and the equipment mounted on a lamppost (c).   

 

 
 

Fig 1. Station Locations (red circles indicate the location of the stations), Instrument and Instrument Housing 

 
The locations of the shelters were picked based on street routes from a previous study “with locations 

selected to capture the range of variability noted in the walking campaigns of 2012” (Vant-Hull et al., 2014). The 

first station located at 63A Reade Street (South side of the street), the second located at 118 Prince Street (North 

side), the third station located at 140 E. 14th Street (South side), the fourth located at 146 E. 35th Street (South side), 

the fifth located at 114 E. 57th Street (South side), the sixth located at 348 W. 57th Street (South side), the seventh 

located at 211 Central Park West (East side), the eighth located at 346 E. 120th Street (South side), the ninth located 

at 150 W. 120th Street (South side), and the tenth located at 300 W 145th Street (South side). Further information 

regarding descriptions of the areas of which each station was located is available in Table 1.  

 

 

 

a c b 
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Table 1. Physical Description of Areas Surrounding Stations 

 

Station 

# 
Street 

Description 
Latitude 

(N) 
Longitude 

(W) 
MSL 

(m) 
AGL 

(m) 
B-Avg. 

Fraction 
B-Avg. 

Height (m) 
Sky 

View 
NDVI* 

Avg. 
1 17 m wide, no 

trees 
40.71497 74.00659 9 3.7 0.94 46 0.06 0.12 

2 13.5 m wide, 

no trees 
40.72513 73.99974 7 3.4 0.74 28 0.28 0.11 

3 27 m wide, few 

trees 
40.73353 73.98815 11 3.9 0.65 42 0.35 0.05 

4 18 m wide, 

some trees 
40.74618 73.97871 14 3.1 0.66 40 0.34 0.02 

5 33 m wide, 

some trees 
40.76123 73.96993 14 3.4 0.59 71 0.41 0.20 

6 32 m wide, 

many trees  
40.76747 73.98488 25 3.5 0.57 70 0.42 0.13 

7 15 m wide, in 

trees 
40.78233 73.97137 30 3.3 0.66 51 0.34 0.25 

8 31 m wide, 

many trees 
40.79877 73.93413 3 3.5 0.10 4 0.96 0.04 

9 21 m wide, 

many trees 
40.80534 73.94968 8 3.1 0.70 25 0.33 0.34 

10 28.5 m wide, 

some trees 
40.82298 73.94274 9 3.3 0.63 22 0.40 0.20 

 
Mean Sea Level (MSL) describes the instruments’ height above sea level, Above Ground Level (AGL) describes the instruments’ height above 

ground level  

  

In the table above: (description of each category) the street description provides the street width along with 

the tree coverage (“no trees” = temperature will be unaffected, “few trees” = tree coverage unlikely to affect 

temperature, “some trees” = may affect temperature if wind blowing through, “many trees” = wind will always blow 

through and instrument has some sky fraction, “in trees” = no sky view through the trees), , the building average 

fraction (B-Avg. Fraction) indicates the fraction of buildings in the zip code that each station is located in, the “B-

Avg. Height” is the average height of buildings in meters in the zip code that each station is located in, Sky view 

fraction is the amount of direct sky above the instrument estimated from the building parameters.  

 

The sky view fraction is estimated from the building parameters and was calculated using the method of 

Gladt and Bednar (2013).  Normalized Difference Vegetation Index- is a graphical indicator used to analyze remote 

sensing measurements for green vegetation. NDVI is calculated from the red and Near-Infrared Radiation (NIR) 

bands as the ratio of (NIR-RED) to (NIR+RED), so that it varies between -1 to +1 (Zhang et al., 2006; Voogt et al., 

2003). To accommodate adjacency effects the average values from 3x3 LandSat pixels centered on each instrument 

is used. Vegetation yields high NDVI, soil registers near zero, and clouds and water produce negative NDVI values. 

The zero vegetation offset is near NDVI = 0.1, but as it can vary with background no offset was applied.  
 

This study focused on midafternoon temperatures at 1500 Local Time (LT) and considered the spatial and 

temporal variabilities that were assumed to affect weather predictions. Days with rainfall within an hour of this time 

were dropped from the data set.  The spatial variability in temperature is assumed to be due to differences in surface 

features alone. The temporal variability represents local changes in temperature caused by convection and perhaps 

mechanical turbulence plus temporal variability of large scale weather patterns. The related field campaigns with 

portable instruments recorded spatial variability across all axes which were attributed mainly to changes in elevation 
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and vegetation (Karimi et al., 2015).  Any regional gradient in temperature is not immediately apparent on this scale 

(10 km).  

Manhattan is small compared to large-scale weather patterns, so we assume all instruments are exposed to 

the same weather variables.  The diurnal patterns of variability in temperature were reported in Vant-Hull et al. 

(2014). These large, slower changes in temperature were filtered out of the calculation of temporal variability by use 

of a running average to define fluctuations in temperature. An exploration of diurnal changes in urban temperature 

variability will be left for a future study. 

In processing the campaign datasets, the spatial temperature standard deviation (σS) was calculated in two 

steps. At each location the data over the course of an hour was averaged to eliminate the convection variation. The 

standard deviation of all 10 stations’ hourly averages was then calculated to get σS. The temporal variation for each 

hour was also calculated in two steps. First the one-hour running average temperatures at each location were 

subtracted from the local temperatures to find the temperature fluctuations from the average for each 3 minute 

interval. These fluctuations over a one hour period were used to calculate the temporal standard deviation (σT).  

Weather variables that relate to the amplitude of fine scale temperature anomalies include temperature (T 
oC), relative humidity (RH%), Eastward wind speed (v), Northward wind speed (u), and lapse rate (LR) from the 

North American Model Reanalysis data set archived by the National climatic Data Center (available every three 

hours with a 40 km resolution and a vertical resolution of 25 millibar near the surface (roughly 250 meters)). Low-

Level Lapse Rate (LR) is the slope of change in temperature with height (dT/dH) at atmospheric pressures between 

975 and 950 millibar grams (mb) and temperature differences between 975 and 950 mb, and was calculated as 

degrees C per km. Other variables affecting temperature include cloud fraction (CF), wind speed (WS), which is the 

vector magnitude of u and v, and evaporation rate (ER) calculated as (WS)(1-RH/100). ER does not include soil 

moisture or other transpiration factors such as light.  

The variability in T, σS and σT, were regressed against weather variables to determine their effects on 

spatial and temporal variability in urban temperatures.  

 

(Temperature variability σS or σT)  = c0 + c1X1 + c2X2  … + cnXn     (1) 

 

where  σS,T   are vectors of temperature variability through time (one value per day), 

           Xi  are the associated weather variable vectors (n variables, one value per day), 

 ci   are linear coefficients found by regression  (n+1 constants). 

 

Single variable correlations between each weather variable and the spatial or temporal temperature 

variabilities were also calculated.  These statistical quantities appear in tables 2 and 3 for spatial and temporal 

temperature variability, with similar calculations in table 4 (explained below). 

 

3. Results and Discussion  

 

The result of calculated correlation between the spatial temperature variability σS and weather variables 

show the highest correspondence with T (r = 0.40) followed by LRlow (r = -0.26). Components of wind are next in 

significance, after which correlations drop down to 0.1 or lower. However all physically meaningful variables are 

included in the regression despite low single variable correlations due to the possibility of statistical suppression 

effects (MacKinnon et al., 2000), whereby cross-correlations may mask significant relationships. The results of the 

correlation between σS and the weather variables can be seen in Table 2.  
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Table 2. Correlation between observed σS and weather model variables. All variables are defined in text 

 

Variable Coefficient   Correlation (r) Variance(r2) 
  T (C) 0.014                0.400               0.160 

     RH (%)    0.002 C              - 0.160               0.027 
    V (m/s)        -0.017 Cs/m              - 0.170               0.027 
    U (m/s) 

                  WS (m/s) 
        0.000 Cs/m 

      - 0.009 Cs/m   
               0.150 

             - 0.038 
              0.021 

              0.001 
                  ER (m/s)           0.024   Cs/m                0.069               0.004 

          LR  (C/km)              - 0.011   km              - 0.260               0.067 
                  CF  (%)     0.000  C                0.110               0.012 

 
 

The results of the correlation between σT and the weather variables can be seen in Table 3.  

 
Table 3.Correlation between observed σT and weather model variables. All variables are defined in text 

 

Variable Coefficient  Correlation (r) Variance (r2) 
T  (C)               0.003                 0.400                   0.160 

                 RH (%)             - 0.000 C               - 0.310               0.095 
 V (m/s)       0.004 Cs/m                 0.150                   0.024 
 U (m/s)     - 0.001 Cs/m  0.019                   0.000 

                 WS (m/s)       0.001 Cs/m               - 0.120               0.014 
                 ER (m/s)     - 0.003 Cs/m               - 0.031               0.001 

      LR (C/km)             - 0.0028 km               - 0.360               0.130 
                CF (%) -0.000 C               - 0.120               0.014 

 
From the weather variables in table 3; T, LR and RH show the highest correlations to temporal variability 

in temperature. Given the complexity of the mechanisms involved, the discussion of physical effects in the 

following two paragraphs is intended to stimulate further investigation, and does not represent conclusions derived 

from the data. 

 

Spatial variability in mid-day temperature has the strongest correlation to temperature itself (Table 2), 

which may be related to warmer days having clear skies and greater differential solar heating among surface 

features. The vertical atmospheric temperature lapse rate (LR) can affect surface temperature variability through 

topographical variability (Table 2). But this is insufficient, for we have noted in previous work in Manhattan that 

variations with air temperature near the surface often change faster with elevation than the atmospheric lapse rate 

(Karimi et al., 2015). The winds are next in order of significance, and can have competing effects on spatial 

temperature variability.  Wind could smooth out surface variations through mixing, or it may cause air to flow faster 

over elevated, exposed surfaces while air in sheltered low areas will have more time to absorb heat from sunlight 

surfaces.  The regression coefficients of Table 2 exhibit such competing effects on the spatial temperature variability 

based on wind direction, which may be related to topography and sea-breeze; but the statistics are not strong enough 

to allow further speculation on this rather complex situation. 

 

Temporal variability in temperature was measured on the scale of minutes, capturing convective and 

turbulent time scales.  Since spatial temperature variability increases with temperature (Table 2), these spatial 

fluctuations will be converted to temporal fluctuations at any given location via turbulent transport, providing the 

correlation to temperature seen in Table 3. Convective mixing at the surface is strongly coupled to the low-level 

lapse rate, so more negative lapse rates should result in greater temporal variability in temperature as seen in Table 

3. It is not clear why RH has a strong negative effect on temporal temperature variability.  It would seem higher RH 

would stimulate clouds and convection with higher variability, but the effect is opposite of the expected. It is 

possible that higher RH results in lower evaporative cooling, but it is not reflected in the evaporation rate term.  

 

To visually clarify the patterns between the weather variables and spatial and temporal variability, the 

regressed relationships were graphed (Figs 2 and 3) versus the observations of temperature variability.  
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Fig 2. Weather model variables vs. observed σS. values, where each data points represents an average hourly value.  

 

 

   
Fig 3. Weather model variables vs. observed σT, where each data points represents one-hour running average.  

 
In fig 2and 3, each point represents the σ of observed temperature values vs. modeled values from eq. (1) 

for each day in the 3 month experiment. The multiple-variable regression coefficients for σS and σT were calculated 

as 0.541 and 0.501 and can be seen in the graphs as the range of predictability that the statistical model can have for 

a given weather conditions. It is also noted that the spatial variability at a level of three or four meters above the 

ground is as much as ¼ the variability at a typical human trunk height of one and half meters (Vant-Hull et al., 

2014), due to the steep temperature gradient in air temperature near the surface.  The temperature variations shown 

in the plots above therefore underestimate the temperature variability seen by pedestrians. This shows that 

temperature variability estimated from weather forecasts exhibit moderate skill in predicting spatial and temporal 

temperature variability within cities. 

 

To further examine the role of topography in temperature variability, the relationships of weather variables 

to the temperature difference between stations at high and low elevation were calculated (table 4). This was done to 

study the impact of winds on the variation of temperature between the lowest (57St West) and highest (120St West) 

streets stations. The trend line in fig 4 shows a moderate multi-variable correlation of 0.5 between weather variables 

and temperature difference. 
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Fig 4. Weather model variables vs. observed σT  for the  highest and lowest elevation stations. Each data point represents an average hourly value. 

 
 
Table 4. Correlation between high and low elevation station temperature differences and weather model variables. All weather variables are 

defined in text 

 

Variable Coefficient  Correlation (r) Variance (r2) 
            T  (C)                 0.067   0.470                       0.220 
            RH (%)    0.011 C                - 0.130  0.018 
            V  (m/s)         0.012 Cs/m                  0.190  0.035 
            U  (m/s)         0.025 Cs/m                  0.280   0.077 

WS (m/s)               - 0.001 Cs/m   0.018    0.0003 
            ER (m/s)                 0.024 Cs/m   0.076   0.006 

   LR (C/km)               - 0.042 km                - 0.216   0.047 

            CF  (%)               - 0.003 C                - 0.047   0.002 

 
Table 4 shows a clear correlation between the average temperature and the temperature difference between 

the two stations. U, the component of wind most nearly perpendicular to the ridge that runs along Manhattan, shows 

a larger correlation to the temperature difference than the nearly parallel component V.  This directionality may 

explain why there is such a low correlation to the total wind speed WS.  As expected the lapse rate is among the top 

three variables correlated to temperature differences with elevation.  

 

Regional weather patterns such as sea breeze can set up temperature gradients that might affect the spatial 

temperature variability, producing a false signal that is not due to more highly localized urban or elevation effects.  

To examine this we turn to the NYC MetNet of the Optical Remote Sensing Laboratory of the City University of 

New York, which includes a network of volunteer weather stations throughout the New York metropolitan area 

(Meir et al., 2013).  Figure 5 shows a typical low-wind day (a), an average of all low-wind days of the summer of 

2013 (b), and averages of all day with winds from the NNW quadrant or winds from the SSE quadrant (c and d), 

since these were the predominant wind directions. To capture temperature patterns without being dominated by 

extreme days, the data was centered about the average each day and normalized by the standard deviation. 

 

The low-wind sample day (a) shows a clear sea breeze pattern, with a gradient perpendicular to 

Manhattan’s axis.  Since the sensors used in this work were largely aligned along the axis of Manhattan (Fig 1) the 

effects of this gradient are minimized.  When all low wind days are averaged (b) the pattern largely vanishes, 

perhaps due to cloudy days that do not exhibit sea breeze.  The average of all days with wind from the NW (c) 

exhibits a near reversal of the sea breeze pattern, so the gradient effect is again minimized.  Rather surprisingly the 

average of all SW days appears to show a reversed sea breeze pattern as well.  In summary the regional gradients are 

largely (but not completely) mitigated by placing the sensors perpendicular to the predominant direction of the 

gradients. 
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Fig 5. NYC MetNet Average Normalized Temperatures Compared to Single Day. Blue (-2 to -1), green (-1 to 0), orange (0 to 1), and red (1 to 2). 

(a) shows a single day with no wind and a clear temperature gradient, (b) shows Summer temperature averages with no wind, (c) shows Summer 

temperature averages with wind coming from the North-Northwest direction, and (d) shows Summer temperature averages with wind coming 

from the South-Southeast direction. 
 

4. Conclusion 

 
There are a number of heat transfer mechanisms that will vary throughout a city, causing variations in air 

temperature. Absorption of sunlight will vary by albedo and shading due to building materials and geometry. 

Infrared radiation is absorbed and re-radiated by surrounding structures, so that variations in exposure to the sky 

(sky view fraction) will cause variations in radiation cooling. These factors affect surface temperature, which is 

transferred to the air depending on wind flow. More exposed areas will have both more radiation cooling as well as 

faster wind flow, so that the heat transfer per volume of air is less, leading to cooler air temperatures.  Note that 

weather variables may have dual effects: higher wind may result in greater air temperature contrasts between 

exposed and sheltered areas while mixing air between areas. Cloud cover will produce less variation due to solar 

heating, yet less variation due to infrared cooling. The regressed relationships between weather variables and the 

spatial and temporal temperature variabilities can be used to predict variability under given conditions.  

 

This exploratory study helps to understand the urban heat island effect within Manhattan using field 

campaign temperature measurements. The high resolution temporal and spatial temperature measurements were 

correlated with weather model data to predict temperature variability. The amplitude of spatial variations of 

temperature was most dependent on average temperature (r = 0.40) and temperature lapse rate (r = -0.26) while 

temporal variations were most dependent on average temperature (r = 0.4), relative humidity (r = -0.31), and 

temperature lapse rate (r = -0.36). Winds can increase spatial variations in temperature, and our evidence links this 

to elevation differences. Lapse rates have a large effect on the temporal variability probably through the effects on 

convective turbulence.  

 

Urban developers and modelers can use this study to factor in the impact of local weather and microclimate 

on variation of temperature in densely populated cities. Such rules of thumb may help in anticipating power loads or 

designing cool cities. 
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